Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis

Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis

4.11 - 1251 ratings - Source

Today's most commonly used circuit models increasingly tend to lose their validity in circuit simulation due to rapid technological developments, miniaturization and increased complexity of integrated circuits. The starting point of this thesis was to tackle these challenges by refining the critical parts of the circuit by combining circuit simulation directly with distributed device models. The approach set out in this thesis couples partial differential equations for electromagnetic devices - modeled by Maxwell's equations -, to differential-algebraic equations, which describe basic circuit elements including memristors and the circuit's topology. First, Maxwell's equations are spatially discretized and a potential formulation is derived, the coupled system is then formulated as a differential-algebraic equation with a properly stated leading term and analyzed. Topological and modeling conditions are presented to guarantee the tractability index of these differential-algebraic equations to be no greater than two. Finally, local solvability, perturbation results and an algorithm to calculate consistent initializations are derived for a general class of differential-algebraic equations with a properly stated leading term having tractability index-2.6 Numerical Examples In this chapter the different circuit models including memristors and electromagnetic devices are verified by some basic examples. The simulation software is written in Python and is an extension in the framework of theanbsp;...

Title:Coupled Electromagnetic Field/Circuit Simulation. Modeling and Numerical Analysis
Author: Sascha Baumanns
Publisher:Logos Verlag Berlin GmbH - 2012-08-15

You must register with us as either a Registered User before you can Download this Book. You'll be greeted by a simple sign-up page.

Once you have finished the sign-up process, you will be redirected to your download Book page.

How it works:
  • 1. Register a free 1 month Trial Account.
  • 2. Download as many books as you like (Personal use)
  • 3. Cancel the membership at any time if not satisfied.

Click button below to register and download Ebook
Privacy Policy | Contact | DMCA